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Abstract. A general Monte Carlo relaxation method has been formulated for the computation of
physically self-consistent model stellar atmospheres. The local physical state is obtained by solving
simultaneously the equations of statistical equilibrium for the atomic and ionic level populations,
the kinetic energy balance equation for the electron gas to obtain the electron temperature, and the
equation of radiative transfer. Anisotropic Thomson scattering is included in the equation of transfer
and radiation pressure effects are included in the hydrostatic equation. The constraints of hydro-
static and radiative equilibrium are enforced. Local thermodynamic equilibrium (L.T.E.) is assumed
as a boundary condition deep in the atmosphere. Elsewhere in the atmosphere L.T.E. is not assumed.

The statistical equilibrium equations are solved with no assumptions made concerning detailed
balance for the bound-bound radiative processes. The source function is formulated in microscopic
detail. All atomic processes contributing to the absorption and emission of radiation are included.
The kinetic energy balance equation for the electron gas is formulated in detail. All atomic processes
by which kinetic energy is gained and lost by the electron gas are included.

The method has been applied to the computation of a model atmosphere for a pure hydrogen
early-type star. An idealized model of the hydrogen atom with five bound levels and the continuum
was adopted. The results of the trial calculation are discussed with reference to stability, accuracy,
and convergence of the solution.

1. Introduction

Much progress has been made during the last decade in developing methods for the
computation of model stellar atmospheres. Methods currently in use have been
reviewed recently in detail by MiHALAS (1967a). These methods were developed
specifically for atmospheres which are assumed to be in hydrostatic and radiative
equilibrium throughout. Local thermodynamic equilibrium (L.T.E.) is assumed
everywhere in the atmosphere and the atomic and ionic level populations are obtained
from the Boltzmann and Saha equations for the local temperature. The source function
1s assumed to be the sum of two terms, a thermal term and an electron-scattering
term. The former is represented by the Planck function at the local temperature,
while the latter depends on the intensity of the radiation field averaged over all solid
angles. The local temperature is obtained by determining that temperature required
for the Planck term of the source function to maintain radiative equilibrium. These
methods have reached a high level of mathematical accuracy. Rapidly convergent
iterative procedures now exist for obtaining the temperature as a function of optical
depth. The condition of radiative equilibrium can be stringently applied with the
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net outward flux, integrated over wavelength, held constant with optical depth to a
small fraction of 19%;. Recently KALKOFEN (1966), STROM and KALKOFEN (19664, b),
STrOM (1967), and MIHALAS (1967b, ¢, 1968) have extended these methods by relaxing
the assumption of L.T.E. In their work the atomic level populations and source
function are coupled to the radiation field. The statistical equilibrium equations are
solved with the assumption of detailed balance for the bound-bound radiative
processes. Elimination of the latter assumption is crucial for the further development
of stellar atmosphere theory.

In this paper a novel method for the computation of model stellar atmospheres
is described. Fundamental simplicity has been emphasized in the formulation of the
method and the algorithm is closely associated with the basic physics of a stellar
atmosphere.

In the new method the equations of statistical equilibrium for each atom, the
kinetic energy balance equation for the electron gas, and the equation of radiative
transfer are solved simultaneously. The atomic and ionic level populations are
obtained from the statistical equilibrium equations, while the local electron temper-
ature is obtained from the kinetic energy balance equation for the electron gas. The
constraints of hydrostatic and radiative equilibrium are enforced throughout the
model. A crude technique has been developed for the transfer of bound-bound
radiation. The technique requires the definition of a mean absorption coefficient
averaged over the line-absorption profile. Use of the technique permits the solution
of the statistical equilibrium equations with no assumptions made concerning detailed
balance for the bound-bound radiative processes. The source function is treated in
microscopic detail. All atomic processes which contribute to the emission and ab-
sorption of radiation are considered. The kinetic energy balance equation for the
electron gas is formulated in detail. All atomic processes by which kinetic energy is
gained and lost by the electron gas are considered. Thomson scattering is included in
the equation of transfer and radiation pressure effects are included in the hydrostatic
equilibrium equation. The computational method contains three novel features
which closely associate the algorithm with the real physical situation in a stellar
atmosphere. First, a novel boundary condition is applied which is based on the
requirement that deep in the atmospnere the local physical state of the material should
asymptotically approach L.T.E. with the radiation field then locally determined as
the Planck function at the local temperature. At a selected density in the atmosphere
the material is assumed to be in L.T.E. at a certain selected temperature, and the
radiation field is taken as characteristic of a black body at that temperature. This
boundary condition differs from that used in other computation methods. In currently
available methods the net flux of radiation escaping to interstellar space is used as a
boundary condition for the determination of the physical structure throughout the
atmosphere. The net outward flux is known before the computation begins but the
physical conditions deep in the atmosphere are then unknown. The situation is
reversed for the computational method described in this paper. The second novel
feature is that the equilibrium physical state of the atmosphere is determined by a
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relaxation technique. The third is that the radiative transfer problem is treated by the
Monte Carlo technique. The iterative relaxation technique of obtaining the equilibri-
um physical state of the atmosphere is somewhat similar to the A-iteration technique
used recently by LECAR (1965). His results showed that a purely iterative technique
produces a solution which may well converge rather slowly. His work has shown that
careful attention must be given to the rate at which convergence is being approached.
In addition it must always be clearly demonstrated that the final apparently converged
solution is stable. MIHALAS (1967b) has adopted a simple method of demonstrating
that a solution has both stabilized and converged. His method is to begin by observing
in which direction successive iterations are moving. The final apparently converged
solution is forced beyond its stabilization point to see if it returns to its original
stabilized value.

The theory on which the new computational method is based is described in
Section 2. The method itself is described in Section 3. Subsection 3.A deals with the
relaxation method for obtaining the equilibrium physical state of the atmosphere.
Subsection 3.B deals with the Monte Carlo technique for transferring radiant energy
throughout the atmosphere. Section 4 contains the results of a trial application of the
method to the computation of a model atmosphere for a pure hydrogen early-type
star. For this calculation the hydrogen atom was approximated by an idealized model
containing five bound levels and the continuum. Section 5 discusses the solution with
reference to its stability, accuracy, and convergence.

2. Theory

The equations describing the physical theory used in the model atmosphere compu-
tation have been formulated for the case of a pure hydrogen early-type star. Each
volume element of the atmosphere is assumed to contain only electrons, protons,
neutral hydrogen atoms, and photons. Specifically, both molecular hydrogen and
negative hydrogen ions are assumed to be absent. The hydrogen atom is approx-
imated by an idealized model containing five bound levels and the continuum.
Although in principle any number of bound levels may be included in the atomic
model for practical reasons the number was restricted to five. The theory is described
below in considerable detail to clarify the subsequent discussion of the Monte Carlo
transfer technique.

A. THE EQUATION OF RADIATIVE TRANSFER
[f the atmosphere is assumed to be approximated by homogeneous plane parallel

layers the equation of transfer may be written as

P ="0 @ e - 0@ 6w

+ 1%0,(2) [(3 ) +f Lz, p) du’ + (3 — 1) ]1 Li(z, w) d//] : v
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where p=cos0, where 0 is the angle between the direction of the beam of light and
the outward normal z to the surface of the star. The intensity of the radiation in
direction p at wavelength A, in ergs cm ™2 sec™! A~! steradian™', is given by I,(z, ).
The equation contains both thermal and scattering terms, since electron scattering
can be an important source of opacity in early-type stars. The first term on the right-
hand side of the equation, j,(z)/4n, gives the amount of radiant energy emitted
spontaneously at wavelength 1, in ergs cm™3sec”* A™! steradian™'. The second
term, K}(z)I,(z, y), gives the amount of energy absorbed from the beam, corrected
for stimulated emission. The third term, a,(z)I,(z, ), gives the loss of energy from
the beam due to Thomson scattering. Finally, the fourth term takes account of
Thomson scattering of radiant energy into the direction u from all other directions
u' integrated over azimuth. Rather than assume an isotropic electron-scattering phase
function the anisotropy of Thomson scattering has been included in the transfer
equation. Choice of the Monte Carlo method for treating the radiative transfer prob-
lem enables an anisotropic phase function to be dealt with in the calculation just
as easily and accurately as an isotropic phase function.
If the source function, S,(z, u), is written as

_ 1 jl (Z) 3 2 ) ’ ’
Si(z, w) = [K. () + 0.(2)] {4n + 7%0,(2) [(3 —u) J L(z, 1) du
1 o @
+(3p’ - 1) J Lz @) u? du’:l}
the equation of transfer reduces to -
,udI;_/dT,l(Z, /L)=IA(Z, Au’)_ S/I(Za ;u): 3
where
dr, = — {K;(2) + 0,(2)} dz 4)

and 7, is the optical depth at wavelength A.
The linear scattering coefficient o,(z) is given by

o,(z) = N.(2) o, (5)

where ¢ is the Thomson scattering cross-section for an electron. N, is the number
density, in cm ™3, of free electrons.

If stimulated emission is treated as negative absorption in the manner outlined
by HUMMER (1965) it may be readily shown that the linear absorption coefficient,
K;(z), corrected for stimulated emission, is given by

15
K,{ =K, — ij,

(6)

where K, is the linear absorption coefficient, uncorrected for stimulated emission.
If the quantity j,/(4nK};) is equal to B,(T), the Planck function for temperature T
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and wavelength /, K is given by
K; = {1 - exp[— he[AKTT} K, ™

where the symbols ¢, /, and k have their usual meanings.
The absorption coefficient K, may be written as

K, = K;pr + Kjrr + K;pp (8)

for wavelengths where line absorption is present. The first of the three terms contri-
buting to the absorption coefficient, K,zp, 1s the linear bound-free opacity due to
photo-ionization. The second term, K,pg, is the linear free-free opacity. The third
term, K,gg, 1s the linear bound-bound opacity due to photo-excitation.

The corresponding spontaneous volume emission coefficient may be written as

Ji=Jsre tJirr + JinB- )

The first term, j,pp, is the volume emission for normal radiative recombination. The
second term, j,gf, is the volume emission for the free-free process. The third, j,zp, is
the spontaneous volume emission for the bound-bound transition.

The quantity K,z may be written as

K;gr = Z N, (A) s (10)

where o,(2) is the photo-ionization cross-section from bound level » for wavelength A.
N, is the number density, in cm ™3, of atoms in level n. The summation is carried out
over all levels n, subject to the condition that

held =1, (11)

where 1, is the ionization energy from level » to the base of the continuum.
The quantity K, may be written as

K;rr = NN ot (/L Te) s (12)

where N; is the number density of protons, N, is the number density of free electrons,

and ogp(4, T,) is a function of wavelength A and electron temperature T, with units
5

cm”.

The quantity K,z may be written as

N, B,

c
Kgpg=—""¥,.(44), 13
ABB 47'[20 n n( ) ( )
where N, is the number density of atoms in level »n’ capable of absorbing radiation
and being excited to level n, B,,, is the Einstein probability of photoabsorption for
the transition, 4, is the central wavelength of the line, and ¥,,(44) is the line-ab-
sorption profile. The line absorption profile is normalized such that

+ oo

f P, (42)d(42)=1. (14)

— o0
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The line-absorption profile is a convolution of Doppler and Stark broadening and
is a function of n, n’, N;, N,, T,, and A4, where A4=(A—4,). The convolution is car-
ried out by six point Gauss-Hermite quadrature.

The quantity j,pg may be written as

JaFe = NiNe Z Bn ('1> Te)’ (15)

where f,(4, T,) is a function of wavelength and temperature for each level n. The
summation is carried out for all values of # such that

held > 1,. (16)
The quantity j,gr may be written as

leF = NiNe:BFF (/17 Te)v (17)

where frr(2, T,) is a function of wavelength 1 and temperature T,. Like f,(4, T,), the
function Beg(4, T,) has units ergs cm® sec™ A1,
The quantity j;zg may be written as

Jis = NyApy (hc//lo) D, (Ai) > (13)

where A,, is the Einstein spontaneous transition probability, and &,,.(44) is the nor-
malized line-emission profile. The assumption is made that

(pnn’ (A'{) = q/n’n (A;“) . (19)

In addition the stimulated emission profile is assumed to be identical with the spon-
taneous emission and photoabsorption profiles.

B. THE ELECTRON-TEMPERATURE EQUATION

The electron temperature may be obtained by solving the local kinetic energy balance
equation for the electron gas.
Kinetic energy is lost from the electron gas by four atomic processes;
(i) Free-free emission,
(if) Normal radiative recombination to all bound levels j,
(111) Electron collisional excitation, summed over all possible bound-bound
transitions,
(iv) Electron collisional ionization, summed over all bound levels ;.
Kinetic energy is gained by the electron gas by the following inverse processes;
(i) Free-free absorption,
(ii) Photo-ionization from all bound levels j,
(1ii) Electron collisional de-excitation, summed over all possible bound-bound
transitions,
(iv) Three-body electron collisional recombination, summed over all bound
levels ;.
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The assumption is made that no energy is gained or lost by the electron gas when
it scatters radiation. The electron-temperature equation may be written as

fdeNN Y Ly+N, N, z QuE+N. > NOEy

= ji=1 k=j+ ji=1

(20)

j=1 k=2 j=1 j=1

5 k-1
J il a,di+ Z N;M;; + N, Z Z NQyE jk+NN Z Q:;E;;
0

The left-hand side of the equation gives the kinetic energy lost from the electron gas,

in ergs cm > sec™'. The right-hand side gives the kinetic energy gained. The quantity

a; is equal to 4nK,J,, the net amount of energy absorbed at wavelength A in ergs

cm ™3 sec™! A™'. The intensity averaged over all solid angles, J,, is given by

+1
Ji=t [ LG du. 1)
-1
In addition, the terms L;; and M;; are defined by
ALIMIT j
A
Lij = ﬂj (i, Te) h7c €, di (22)
0
and
ALIMIT j
A
M = 4n % (%) 4 K;Je, dA, (23)
K, hc
0
where
and
’q'LIMITj = hC/Eji- (25)

Q« is the electron collisional rate, in cm® sec ™", for excitation from the lower bound
level j to the upper bound level &, and Q,; is the corresponding rate for the inverse
process of de-excitation from level & to level j. Q; is the electron collisional ionization
rate, in cm® sec™!, from level j to the base of the continuum 7, and O, ; 1s the corre-
sponding rate for the inverse process of three-body collisional recombination. E, is
the energy, in ergs, required to raise an atom from a lower level j to a higher level k.
E;; 1s the ionization energy from level j to the base of the continuum.

The kinetic energy balance equation has been formulated on the assumption that
the electrons maintain a Maxwellian velocity distribution of characteristic temperature
T,. For this assumption to be valid it is essential that the relaxation time for elastic
electron-electron collisions is much shorter than the mean time an electron remains
in the continuum state. The relaxation time may be calculated from formulae given
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by Spitzer (1962). For the electron densities and temperatures expected in stellar
photospheres the relaxation time is always orders of magnitude shorter than the
mean lifetime of a free electron.

C. THE STATISTICAL EQUILIBRIUM EQUATIONS

The atomic and ionic level populations in any volume element of the atmosphere are
obtained by solving the set of statistical equilibrium equations for each atom. Each
equation of a set gives the rates at which atoms are entering and leaving a given
energy state. In the steady state the rates of entry to and exit from each level are
equal. For a hydrogen atomic model, with five bound levels and the continuum, the
statistical equilibrium equation for each bound level j may be written as

5
n=1
n¥*j

For the continuum 7 the corresponding equation is

5
Z NnUn6 - NiU66 = O. (27)

n=1

The atomic level populations are subject to the condition that

5
Y, Ni+ N; = Nrorac (28)

n=1

where
NrotaL = p/my, (29)

3 and my is the mass of the hydrogen atom in

where p is the density in grms cm™
grms.

The following atomic processes must be considered in the evaluation of the Uy,
terms;

(a) Spontaneous bound-bound emission.

(b) Induced bound-bound emission.

(c) Photoexcitation.

(d) Photo-ionization.

(e) Normal radiative recombination.

(f) Induced radiative recombination.

(g) Electron collisional excitation.

(h) Electron collisional de-excitation.

(1) Electron collisional ionization.

(3) Electron collisional recombination.

Induced, or stimulated, emission is treated as negative absorption. Detailed
balance is not assumed for the bound-bound radiative transitions.
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For n' <n,n<5, n#n'

+ oo
U= — =K, J,d(42 N.Q, 3
e | e inawan + no (0
Unn’ = Ann’ + Nean' . (31)
For j<35,
ji-1 5 + o
U.. = A, +— — UK, d (44
jJj 2 Jjk NJ 2 Ejk J\ KA AYA ( )
k=1 k=j+1 -
i1 (32)
ALIMIT j
47 o (A 5
he K; k=1
0 j*k
For n=6=i
5 AvcmvaTn’
N 5
Unn = Ee 2 j ﬁn’ (ia Te) j‘ d}' + Nez Z an" (33)
c we
n =1 0 !
Forn=6=i,n"<n
ALimit 0’
N,
Unn’ = z J' ﬂn’ (17 Te) A dl + Nean' . (34)
C
0
D. THE EQUATION OF HYDROSTATIC EQUILIBRIUM
The equation of hydrostatic equilibrium is given by
dP(z)
=== 9@ 00, (35)

where P(z) is the total pressure in dynes cm ™2, g(z) is the surface gravity in cm sec ™2,

and p(z) is the density in grms cm ™. The quantity dP(z)/dz is the sum of two terms,
a gas-pressure term dP,/dz and a radiation pressure term dP,/dz. The radiation-
pressure term may be written as

[*9)

dl;rii) = % j (K;(z) + 0,(z)) Fy(2) d4, (36)
where 0
fule) =2 f (2, ) e dp. (37)

-1

The quantity nF,(z) is the net outward flux of radiation of wavelength 4 at the position
z in the atmosphere.
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E. THE EQUATION OF RADIATIVE EQUILIBRIUM

The equation of radiative equilibrium is given by

@© [+

[EACEIEEE [ K@ nE @ (38)

0
F. SOURCES OF ATOMIC DATA

For the hydrogen atom the Einstein probability coefficients 4,,., B,,, and B,,, were
obtained from WIESE ef al. (1966). Bound-free photo-ionization cross-sections were
computed for each level of the hydrogen atom as a function of wavelength from
formulae given by MENZEL and PekERis (1935). For the inverse free-bound process,
radiative recapture cross-sections and recombination rates were computed from the
photo-ionization cross-sections by using the Milne relation. Free-free absorption and
emission data for each wavelength, temperature, and electron density, were computed
from formulae given by CiLLIE (1932). To save computer time a simplified method of
computing Stark broadening as a function of principal quantum number, electron
density and temperature, was required. The approximate method developed by
GRrIEM (1960) was used. Electron collisional excitation and de-excitation rates were
computed from formulae given by ALLEN (1963). De-excitation rates were obtained
by the principle of detailed balance. Electron collisional ionization rates were computed
from formulae given by GRyZzINsKI (1964). Rates for the inverse process of three-body
recombination were computed by the principle of detailed balance. Of all the atomic
data used in the model atmosphere computation the electron collisional excitation
rates and de-excitation rates are by far the most uncertain. Typically, errors of up
to a factor of 2 or so may be expected in their absolute values. Unfortunately signif-
icantly better collisional cross-section data, on which the rates could be based, do
not yet exist.
3. Computational Method

A. THE RELAXATION PROCESS

The atmosphere is approximated by a model containing a number of plane parallel
zones. The physical conditions are assumed to be uniform throughout each zone.
The zone boundaries are determined from the equation of hydrostatic equilibrium.
The pressure ratio, p;/p;.,, between the boundaries i and i+ 1 of a given zone i
normally may be taken as given by

10g10(Pi/Pi+ 1) =0.2. (39

The choice of 0.2 for the right-hand side of the equation is somewhat arbitrary. It
represents a compromise. For practical reasons a fairly small number of zones must
be used, but the entire atmosphere must still be adequately covered. Practical con-
siderations restrict the number of zones to about 20. A further consideration in
determining the zone boundaries is that each zone must not be so wide that the
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assumption of its homogeneity in density and temperature becomes untenable. The
density throughout each zone is obtained from the linear distance between the
boundaries and from a knowledge of the mass of material contained in the zone.

The essential feature of the relaxation technique is the imposition of an initial
non-equilibrium physical condition on every part of the atmosphere. The atmosphere
is then permitted to go through a controlled relaxation until it reaches the steady
equilibrium state. Instead of starting the iteration from an L.T.E. radiative equilibrium
solution — an initial condition used in the A-iteration method — the initial physical
state of the atmosphere is chosen to be very far from equilibrium. The objective in so
doing is to permit a rapid relaxation fowards equilibrium particularly during the first
few iterations of the atmosphere. The relaxation is begun by arbitrarily assuming the
atmosphere is initially isothermal at the lower-base boundary temperature and in
L.T.E. throughout. In its initial state the atmosphere is very far from radiative
equilibrium. The outer layers of the atmosphere will cool from their initial high-
temperature state during successive iterations. The cooling of any zone of the atmos-
phere indicates a local imbalance between photo-ionization and radiative recom-
bination. The imbalance is such that the number of photo-ionizations is less than the
number of radiative recombinations. As the zone cools substantial recombination
from the continuum will occur. The atomic level populations will increase and move
towards their equilibrium values. The relaxation proceeds until every part of the
atmosphere reaches equilibrium.

The lower-base boundary of the atmosphere is assumed to be a black-body
surface characterized by a density p, and a temperature T,. A flux of black-body
radiation of characteristic temperature T, is fed into the atmosphere across the lower
boundary. Radiation flowing downward from higher regions of the atmosphere which
strikes the lower boundary is totally absorbed. However, the adopted boundary
temperature remains fixed throughout the computation of the model atmosphere.

Hydrostatic equilibrium is assumed and the atomic and ionic level populations of
each zone are set initially at their L.T.E. values for the local temperature. Initially the
atmosphere is assumed to contain no radiation. It is then released from its stretched
condition, and the radiation spontaneously emitted per second from every part of
the atmosphere is transferred by Monte Carlo source particles as described in the
following section. During the transfer of the radiation the physical state of the
atmosphere is arbitrarily held constant. No attempt is made to follow the relaxation
of the physical parameters with time. After the transfer is completed, and all the
radiant energy carried by the source particles has either been reabsorbed or escaped
into interstellar space, the energy absorbed in each zone is used to determine the
new physical state of the atmosphere. The atomic and ionic level populations, the
electron densities and temperatures, and the departures of the level populations from
their L.T.E. values are determined for all zones. Escape of radiation from the outer-
most zones causes them to cool, contract, and become denser. The entire atmosphere
becomes much less distended. The condition of radiative equilibrium is applied and
the solution is iterated until convergence is reached.
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If for each zone K;J, is known as a function of wavelength, from the Monte
Carlo transfer technique, the terms in the equations of statistical equilibrium and in
the electron-temperature equation can be evaluated. The atomic and ionic level
populations and the electron temperature can be determined by an iterative technique.
The determination of the absorption coefficient at any wavelength for use in the
Monte Carlo transfer requires a knowledge of the temperature, density and atomic
level populations, which must be obtained either from a previous iteration of the
atmosphere or by assumption.

At the end of each iteration of the atmosphere the physical state of each zone is
determined by a relaxation technique. To determine the range in which the electron
temperature must lie, a sequence of trial temperatures are used in the solution of the
statistical equilibrium equations and in balancing the electron-temperature equation.
For each temperature the equations of statistical equilibrium are solved first and the
new populations are used in testing the balance of the electron-temperature equation.
If the energy gained by the electron gas is greater than the energy lost the adopted
temperature is too low. Vice versa the temperature is too high. The range in which
the electron temperature must lie is repeatedly halved following each test of a trial
temperature. If the correct temperature is expected to lie between 0 and 10°K, for
example, it may be obtained to an accuracy of 1K after only 18 trial solutions
(28~ 109).

An iterative technique must be used to solve the statistical equilibrium equations
since the equations are non-linear in the electron density, N,. If N, is known, the
equations become linear. The iteration starts with N, set at zero. The statistical
equilibrium equations are then solved, and N, is reset to equal the number density
of ions. The iteration is continued until N, and the atomic and ionic level populations
converge.

Some difficulty was encountered in solving the linearized statistical equilibrium
equations, particularly when the number of ions was very much greater than the
sum of the populations of the atoms in the bound levels. The Gauss-Jordan elimi-
nation method was found to produce non-physical results due to the ill-conditioned
nature of the equations. In particular negative values for the atomic level populations
could occur. To overcome these difficulties an alternative method of solution was

developed.
We have the condition 5
'21 N; + N; = NroraL- (40)
j=
In the steady state
so that
]if = Ui" = 1<j<5 d =
= = R;, <j<5, an Ry =1.0. (42)
N; U
The value of N; is given by 6
N; = Nrotar/ Z Rj' (43)
ji=1
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The values of N;, 1 <j<35, may be obtained from
N;= NR;. (44)

The total number of neutral atoms, Ny neutral» MaY be obtained from

5
NTotalNeutrul = Z Nj- (45)
j=1

Further values of N,, 1 <k <5, may be obtained from the following considerations.
In the steady state

N;Uy,=NU;, forj#k 1<j<51<k<S5, (46)
so that
Nj_ Uy R for i .
5 T RN, Or]¢k71<]<551<k<5’ and
R;=1.0, forj=k. (47)
It follows that
6
Nk = NTotalNeutral/ Z Rj' (48)
i=1
In addition
N;=NR;, forj#k 1<j<51<k<5. (49)

The average value of N;, 1 <j<35, is obtained finally. A normalization check of this
value is made by multiplying it by

5
NTotal Neutral/ Z Nj:
=

J

where the values of N; used in the summation are the average values before normal-
ization.

The techniques for solving the statistical equilibrium equations and the electron-
temperature equation were tested by using them to determine the physical state of a
volume element of the stellar atmosphere, of density p, illuminated by an isotropic
black-body radiation field of characteristic temperature 7. In these tests no assump-
tions were made concerning detailed balance for the bound-bound radiative transitions.
Several widely different combinations of p and 7 were used as test cases, e.g. T=
50000K, p=5x10"8 grms cm > and T=10000K, p=10""! grmscm~3. For these
ranges in density and temperature it was found that, provided the radiation field was
known, the most useful starting-condition for the solution of the physical state of the
gas was to assume that initially all atoms are ionized. The solutions of the statistical
equilibrium equations, and the electron temperature equation, were iterated until
the electron-number density and the atomic and ionic level populations had converged
to an accuracy of 0.59, and the electron temperature had converged to an accuracy
of 19. Progressive recombination from the continuum appears to occur rapidly
during successive iterations. No more than three iterations were ever required to
obtain the above level of accuracy. In each of the test cases which were considered
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the electron-number density and the atomic and ionic level populations rapidly con-
verged to the appropriate L. T.E. values for a temperature 7" and density p. The
electron temperature converged to the radiation temperature, 7. Of course, the
solutions could readily have been iterated further to attain greater accuracy. However,
the above accuracy was adopted for the exploratory calculations with the relaxation
technique which are reported below. It may be remarked that only those departures
from L.T.E. in the atomic level populations which are greater than 0.59% will then
be detectable. In particular, such small departures reported by MIHALAS (1967b, c)
will not be detected unless the accuracy of the solution is increased considerably.

B. MONTE CARLO RADIATIVE TRANSFER

Recently FLECk (1963) has demonstrated the Monte Carlo technique for solving
non-linear radiation transport problems. The simplicity of the method, its inherent
stability, and the ease with which anisotropic scattering phase functions may be
treated, make it an attractive technique for handling radiative transfer in stellar
atmospheres. It may be remarked, however, that the price paid for simplicity is the
necessity of using a considerable amount of high-speed computer time, so that enough
Monte Carlo events occur to obtain good statistical accuracy in the final results.

The essence of the Monte Carlo technique is that the radiant energy emitted per
second from every part of the atmosphere at each wavelength is carried by a very
large number of source particles which have some of the properties of photons. A
separate species of source particle is used to transfer radiation of each wavelength.
In their migration through the atmosphere these source particles interact with the
stellar material with the absorption of part of their energy and scattering of the
remainder. The amount of radiant energy associated with a source particle at any
point in its migration is given by its ‘weight’, which steadily decreases with each
interaction with matter. A tally is kept of the amount of energy deposited in each
zone by each species of source particle to determine K,J; as a function of wavelength.
If K;J, is known as a function of wavelength the electron-temperature equation and
the equations of statistical equilibrium can be solved.

The evaluation of the terms in the electron-temperature equation and in the
statistical equilibrium equations requires the integration of the bound-free and free-
free absorption over the continuum wavelengths. The quantity K;J, is discontinuous
at the Lyman, Balmer, Paschen, Brackett, and Pfund series limits. The amount of
radiant energy excluded from the calculation by truncating the wavelength range at
10 and 50000 A is negligible. By using six-point Gaussian quadrature for each of
the 6 segments radiant energy need be transferred at no more than 36 individual
continuum wavelength points to determine the bound-free and free-free absorption
in each zone.

A similar procedure for obtaining the bound-bound absorption integrals for
each zone, by transferring radiation at a very limited number of Gaussian wavelength
points within each line, cannot be used in the case of an inhomogeneous atmosphere.
Changes in density and temperature throughout the atmosphere severely affect the
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absorption and emission profiles for each bound-bound transition. Temperature dif-
ferences alter the width of the Doppler core, while density differences alter the shape
of the Stark wings. Wavelength points chosen deep in the atmosphere will be un-
suitable for the more tenuous outer regions where the profile is much narrower.

For the transfer of bound-bound radiation all the radiant energy, integrated over
a wavelength band centered on and containing the line associated with the particular
transition, is carried throughout the atmosphere in one species of source particle.
Background continuum radiation arising from free-bound and free-free emission is
also transferred in the same species of source particle. To follow the transfer of these
source particles from one part of the atmosphere to another it is necessary to define
an appropriate mean absorption coefficient for the band. Before discussing how such
a mean absorption coefficient may be defined it should be pointed out that such an
approach to the transfer of bound-bound radiation is very crude indeed. The crudity
of the treatment is unfortunately dictated by practical considerations for the problem
to become computationally tractable.

The calculation of a mean absorption coefficient for the band is based on the
following considerations. Consider the transmission of radiation in a wavelength
band of width 2 AAyr through a homogeneous slab of atmospheric material of
thickness x. The radiation is assumed to be striking the slab at normal incidence. The
band contains radiation which originated in the free-free and free-bound emission
processes as well as radiation which originated in bound-bound radiative decays.
For simplicity Thomson scattering is not included in the determination of the
transmission of the radiation in the band. Its inclusion would not affect the
subsequent definition of the mean linear opacity for bound-bound absorption for
the band. The transmission through the slab may be written

[1.(2) = ()] exp[— (K. (4) + K/ (4)) x] d4,

BAND

where I (A) is the intensity of the background continuum radiation of wavelength 1
incident on the slab, I,(4) is the intensity of the bound-bound radiation of wavelength
4 incident on the slab, K (1) is the continuum linear opacity, corrected for stimulated
emission, which contains contributions from free-free and bound-free photoabsorp-
tion, K;(4) is the bound-bound linear opacity, corrected for stimulated emission.

A mean linear opacity, K’, corrected for stimulated emission, may be defined for
the band such that the total transmission integrated over the band remains the same
as before. In that case we have

exp[— K'x] f [1.() + L(2)] d2

BAND (50)
= | b+ n@Tew - (KD + K@) K a2,

BAND
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If we write

T=K'x (51)
and
t () = K. (D) x (52)
with
() = K (D) x, (53)
we have
(=9 [ [LG)+ 1) 4
BAND (54)
= [ )+ @Iew - (@ + u@)] 42,

BAND

If the approximation is made that K /(1) is independent of wavelength over the
band considered we have

exp(=7) [ [L()+ L) a2
BAND (55)
—exp[—c] [ [L()+h@]expL- (1) dz.

BAND

The approximation is also made that I.(1) is independent of wavelength over the
band. For convenience the quantity I; is defined such that

+d4ALimiT
f I,(/l) di=1I. (56)
—AALimiT
We have then
exp [— 7] {21 Adppir + I}
+AALiMIT
. (57)
=exp[— 7] [l + L(A)] exp[—7,(4)] d4.
_A;LIMIT ]
If Tgp is defined by
Tgp =T — T, (58)
we have
+AALiMIT
exp [ = Zop] {21, Adppur + I} = f [L + (D] exp[— 7,(2)] di. (59)
_A;:LIMIT

The exponential terms on both sides of the equation may be expanded into their
corresponding series forms. If terms of second and higher order in 7z and 7,(1) are

neglected in the expansion we have
+AALimMiT

[21. Ad it + L] Top = f [I + L(A)] 7, (4) dA. (60)

~AlLiMIT
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Dividing Equation (60) through by x we have the definition of K}, which is

+AirimIT

f LL + L(A)] K (%) dA

’ —AdiLiMIT
= —. 61
o [y + 21, D] (D

We know that

Kisg, (62)

where N,, N, are the number densities for atomic levels #» and n’ respectively. It
follows that

, NyByw o,

" [Ny Byy — Nl ©9

where Kpp is the mean linear opacity for bound-bound absorption for the band,
uncorrected for stimulated emission.

For an inhomogeneous atmosphere, in which the band radiation is transferred
by Monte Carlo source particles, the quantity Ky relevant to the transfer of any
particular particle is a function of the zone / of origin of the particle and of the zone j
in which interaction with matter occurs. The corresponding mean linear opacity,

K;;, is defined by

ijs

K;; = Kgp;; + K;pr + Kspr» (64)
where K,z and K, are, respectively, the bound-free and free-free linear absorption
coefficients for zone j and wavelength 1,. The mean bound-bound opacity Kgg;;
may be obtained from

+A4ALivaT

jiKABB di
Ry, = —2mar : (65)

+A4ALiMIT

Jad4
—AdiLimIT

where the emission coefficient, j,, refers to zone 7, and K,y refers to zone j.
The corresponding mean linear opacity for the band, corrected for stimulated
emission, is given by

K:; = Kgpij + Kipr + Kirr (66)
where
, , A .
(Kipr + Kirr) = (Kipr + Kipp) — 8mhe? (jars + JirF) (67)

The quantities K,gp, K;rr, Jipp, and j g, refer to zone j.
The band width, 244 vy, is obtained by choosing AA; vy such that

dbi (AALIMIT) = 0.0l@i (0) s (68)
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where ®(44) is the normalized emission profile for the bound-bound transition for
zone 7. If zone 7 is the lower base boundary, then @,(44) is independent of wavelength.
In that case the value of A4y is taken as that appropriate for the zone immediately
above the lower boundary. The integrals used to determine Kgp;; are symmetrical
about 44=0. Six-point Gaussian quadrature is used for the integration between 0
and AA;pr-

A question immediately arises concerning the validity of the choice of a mean
opacity for the transfer of bound-bound radiation. In particular, in what sense will
the transmission through any linear thickness, x, of gas be distorted by such a choice?
That question may be answered qualitatively by examining certain simplified cases.

The idealized case of the transmission of radiation in a Doppler-broadened
emission line through a gaseous medium composed of atoms with only two energy
levels has been considered briefly by IvaANov and SHCHERBAKOV (1965). The simplest
case they considered was where the absorption profile is Doppler shaped with the
same central wavelength and width as that of the incident emission line. Their results
show that the transmission, integrated over the line, decreases monotonically with
increasing optical thickness at the central wavelength. As the optical thickness
gradually increases from zero the rate at which the transmission decreases is very
rapid at first, becoming slower as the thickness becomes large and transmission in
the wings of the line increases rapidly in importance relative to transmission near the
line center. Suppose now that Ky is determined for this idealized case in the manner
outlined above. From the results obtained by Ivanov and Shcherbakov it is not
difficult to show that the correct integrated transmission will always be greater than
exp(— Kgpx) for all x greater than zero. The ratio of the correct to the distorted
transmission exp (— Kgpx), approaches unity as x tends to zero, and becomes pro-
gressively larger as x increases. As we shall see shortly, the curve of transmission vs.
optical thickness 1s used in choosing the distances travelled between collisions by
the bound-bound Monte Carlo source particles. To ease the computational problem,
the curve of exp (— Kgpx) vs. x is used in place of the correct transmission curve for
choosing these distances. Consequently the tendency will always be to underestimate
the distances travelled between collisions by each of these source particles. The net
effect for the transfer of a large number of source particles will be to underestimate
the transmission of the bound-bound radiation, particularly through large optical
thicknesses.

Suppose now that the Doppler width of the incident line is greater than that of
the absorption profile. Such a case is analogous to the transfer of a flux of bound-
bound radiation from a high-temperature region of a stellar atmosphere through
lower-temperature regions into interstellar space. The integrated transmission will
be greater than in the case where the Doppler widths are equal, because of the in-
creased relative importance of transmission in the wings of the line. Again, the
effect of using the exp(— Kggx) transmission curve in the transfer of the bound-
bound source particles will be to underestimate the integrated transmission.

It follows that the escape of bound-bound source particles from the atmosphere
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will be inhibited by our adopted method of treating their transfer through the gas.
Consequently, departures from detailed balance for the bound-bound radiative
processes, arising from the escape of bound-bound radiation from the atmosphere,
and the resultant departures from L.T.E. in the atomic level populations, will be
underestimated.

Source particles originating from the lower-base black-body boundary are not
emitted isotropically into the upward hemisphere. The number of photons crossing
this surface from below in any given direction is weighted by p,, the cosine of the
angle which this direction makes with the z-direction. The quantity u, is obtained
from the relation

‘uo = MaX (7"1, 7‘2) N (69)

where r; and r, are two uniform random numbers between 0 and 1. y, is set equal
to the larger of the pair. The initial weight, w,, of each continuum source particle
of each species emitted from the lower-base boundary is given by

B, (T,
wo = jf o), (70)
B

2 1

where B,(T,) is the Planck function, in ergs cm™ 2 sec™* A™! steradian™?, for
wavelength 4 and temperature T,. ny is the number of source particles of that parti-
cular species which originate in the lower base. The corresponding value of w,
for a bound-bound source particle is given by

_ 27IB}.0(T0) A it

ng

(71)

Wy

where B,(T,) is assumed not to vary over the wavelength band. A2 vy is obtained
from

where ¢(44) is the emission profile for the zone immediately above the lower base.

Source particles originating from each of the zones are emitted isotropically,
and uniformly at random in z, throughout the thickness of the zone. The direction
of emission, p,, is obtained from the relation

o =2r— 1, (73)

where r is a uniform random number between 0 and 1. The initial weight, w,, of
each continuum source particle of each species emitted from a zone of thickness 4z
is given by
j, Az
w, =T22Z. (74)
nZ
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n, is the number of source particles of that particular species which originate in the
zone. The corresponding value of w, for a bound-bound source particle is given by

AALiMrT
Az .
: —AALIMIT
In this case Ay 1S obtained from
& (Adypr) = 0.010(0), (76)

where ®(42) is the emission profile for that zone.

For any given source particle the distance, dj, it must travel to reach the boundary
of its current zone may be computed readily from a knowledge of its current location
and direction of motion. The distance, d_,,, travelled before a photon-matter inter-
action occurs may be obtained from

dcol =n Iloge I‘, s (77)

where r is a uniform random number between 0 and 1.  is the current mean free
path of the source particle and may be written as

n=I[K;+o]" (78)
for the transfer of continuum radiation, and as
n=[K;+a]" (79)

for the transfer of bound-bound radiation.
If dy>d.,, the source particle suffers an interaction in its current zone. If w is the
‘weight’ of the source particle before an interaction, the weight following interaction

is
O-S
W
K, + o,

if the source particle is transferring continuum radiation, and

O-S
_ [42]
{K,-j + Us}

if it is transferring both bound-bound and background continuum radiation. The

quantity
GS O-S
: , or —
K}_ + O's Kij + O's

is the fraction of the continuum or bound-bound energy, respectively, associated
with the source particle, which is scattered by the free electrons at the point of inter-

action. The quantity
K; Ki;
T ’ Or —_—
K; + o Ki; + o,
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is the corresponding fraction of the energy absorbed by the material at the point of
interaction. In the case of the absorption of bound-bound and background continuum
radiation only the fraction

KBBL‘ j/ Ki j

is absorbed in the bound-bound transition itself, and included in the tally of energy
absorbed for the particular transition.

If dy<d.,, a zone boundary is crossed. The value of dj, the distance the particle
must travel to reach the other boundary of the new zone, is readily computed. The

value of d_;, for the new zone is obtained from

dey = (71’/’7) (dcol - dB) > (80)

where 7’ is the mean free path of the source particle in the new zone.

When a source particle is scattered a new direction g’ is chosen uniformly at
random from p(u, p’), the Thomson phase function integrated over azimuth. The
quantity p(u, u') is normalized such that

f p(u, ) dp' = f p(', ) du=1 (81)
with - -
p(w ') =pW, 1, (82)
where
p(u, 1) =6 [(3 — 1®) + Bu? — 1) u'*]. (83)

To obtain y’ uniformly at random from the p(u, ') distribution for a given u, we
solve for x in the equation

x

2fpw40dﬂ=r, (84)

0

where r is a uniform random number between 0 and 1. This equation reduces to
1 2 3 3 2 —_
0B —Hx +3B—-p)x—r=0 (85)

and may be solved for real values of x by standard methods. The derived value of y
may be either positive or negative. A uniform random number r between 0 and 1 is
chosen to make the decision. If

r=05, u=x. (86)
If
r<05, uy=-—x. (87)
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The source particles of each species are followed through the atmosphere until either,
they escape from the top of the atmosphere into interstellar space, collide with the
totally absorbing lower-base surface, or have their weights drop to a very small
fraction of their original values. If a source particle reaches either the top or the
bottom of the atmosphere during transfer, its history is terminated and the energy
it is carrying is permanently lost to the atmosphere. When its current weight drops
below @yt the remaining energy of the particle is absorbed at its current location
in the atmosphere. The choice of @y 1, the weight limit, is made somewhat arbitra-
rily. It was decided primarily on the basis of practical considerations, as discussed
in the following section on the results of a trial calculation. A tally is kept of the
amount of energy deposited in each zone of the atmosphere by each species of source
particle. In the case of the continuum source particles the tallied total amount of
energy absorbed in a given zone of thickness 4z’, for a particular species of particle
associated with wavelength A, is equal to 4nK;J, 4z’. In the case of a particular
species of bound-bound source particle the tallied amount of energy absorbed in the
same zone is equivalent to

+ o0

K
4m Az’ j IzBB-K;Jl d(4%).

A

—

4. Results

The Monte Carlo relaxation method has been applied to the computation of a model
atmosphere for a pure hydrogen early-type star. The stellar mass was taken as 15 M,
and the radius as 6 R, giving a surface gravity g of 1.14 x 10* cm sec™%. Lower-base
boundary conditions of T,=50000K and p,=5.0x10"% grms cm ™3 were selected.
These boundary conditions were chosen so that a model atmosphere with approxi-
mately 20 zones would be an adequate representation of a real early-type stellar
atmosphere to include both optically thick and optically thin regions. For practical
reasons an 18-zone model was finally adopted. Experience showed that the scarcity
of photon-matter interactions in the optically thin outer zones may cause difficulty
in the reliable determination of their physical states. To reduce the likelihood of such
an occurrence the outermost zones were taken to be wider than the lower zones. The
quantity log,, (p;/p;+1) Was taken as 0.4, 0.6, and 1.0 for zones 16, 17, and 18, respec-
tively.

The number of source particles of each species originating in each zone, and the
weight limit associated with each species of particle, critically determine whether or
not the Monte Carlo relaxation technique may successfully be used to compute a
model stellar atmosphere. For the lower base boundary ny was taken as 2000 for
each species of particle. For each of the lower zones 1-15, n, was taken as 2000 for
each species of source particle. For the outermost zones 16, 17, and 18, n, was taken
to be larger by factors up to 2.5 to reduce the chance of substantial fluctuations
occurring in the amount of radiation absorbed at each wavelength in these zones.
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A total of nearly two million source particles were followed in the solution of the
radiative transfer problem during each iteration of the atmosphere. Practical con-
siderations prevented any significantly larger number of source particles from being
used. The weight limit, w; v, also was chosen somewhat arbitrarily from practical
considerations. It was set equal to 0.005 w,, or 0.59%; of the original weight of the
particle.

If substantial statistical fluctuations occur in the amount of energy absorbed at
each wavelength, in any given zone, the possibility exists of oscillations in the electron
temperature progressively building into an instability during successive iterations.
To avoid the danger of instability #; and n, must be large while w jy;r must be small.
Experience showed that with the above choices of these parameters temperature
instabilities could occur at large and small optical depths after the fourth iteration
from the isothermal L.T.E. state. However, with the available computation facilities
(CDC 3200) it was not feasible to improve the choices of the ng, n,, and O pr
parameters substantially. The significance of the particular choices of these para-
meters for each species of source particle will be discussed further in the following
section.

To study the statistical fluctuations in the atomic level populations over many
iterations of the atmosphere, it was necessary to avoid temperature instabilities. Three
kinds of artificial damping were applied during each iteration so that the instability
problem would not occur. These are:

(i) Each successively higher and more tenuous zone was not permitted to have
a temperature greater than that of the zone immediately below it.

(i) No zone was permitted to acquire an electron temperature greater than that
of a black body which would emit the same total amount of energy per cm® per
second as was absorbed by the zone material. This condition ensured temperature
stability in the deeper optically thick zones.

(iii)) To ensure stability in the outermost two or three optically thin zones the
temperature of each zone was not permitted to be greater than that obtained from
the previous iteration.

Application of each or any of these three types of damping risks possible over-
damping of the temperature profile of the atmosphere. The outer zones might perhaps
become too cool because of unusually large downward fluctuations of temperature
occurring in the deeper zones. It should be borne in mind also that very recent
calculations by FEAUTRIER (1968) indicate that constraints (i) and (iii) will become
inapplicable at very small optical depths. Here non-L.T.E. effects become significant
and cause a rise in temperature with decreasing optical depth. The temperature
profile obtained for the atmosphere by making use of these artificial damping devices
did not differ noticeably from the profile obtained without any damping. This point
will be discussed further below.

The relaxation of the atmosphere from an initial non-equilibrium isothermal
L.T.E. state to a stabilized non-L.T.E. state proceeded extremely rapidly. No more
than three iterations were required to obtain stabilization, each iteration taking
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approximately 200 min on a CDC 3200 computer. After stabilization any variations
in the results from one iteration to the next were statistical fluctuations due to the
nature of the Monte Carlo technique. The question of convergence will be discussed
in the following section. The main results of the computation are given in Tables I
and 1I.

Table I gives the values of the basic physical parameters for each zone averaged
over 10 consecutive iterations after stabilization. Possible oscillations in the temper-
ature profile were damped during successive iterations. After stabilization the profile
remained essentially constant to within a few tens of degrees Kelvin. Column 1
gives the zone number, zone 1 being the deepest and densest immediately adjacent to
the lower-base boundary, and zone 18 being the highest and most tenuous immediately
adjacent to interstellar space. Column 2 gives the electron temperature, T,, in de-
grees Kelvin. Column 3 gives the density, p, In grms cm™?. Column 4 gives the
thickness of each zone, Ax, in cms. Column 5 gives 749004, the optical depth at
4000 A for the center of each zone. Column 6 gives the electron number density, N,,
in cm 3. Columns 7 through 12 give b,, the departures of the atomic level populations
from their corresponding L.T.E. values, for levels of principal quantum number 1-5
and for the continuum labelled level 6. The quantity b, is defined by

Nn Non-LTE
b, = —enLTE 88
N %)

n LTE

where N, is the number density, in cm ™2, for level n.

TABLE 11
Model atmosphere results. Statistical errors

Zone

No. Aplp A(dx)]4x Aby Abs 4bs Aba Abs Abg
1 6331E—3 6.254E—3 1.0167 1.0062 1.0053 1.0051 1.0049 1.0000
2 S5.632E—3 1.104E-—-2 1.0135 1.0058 1.0048 1.0045 1.0044 1.0000
3 6.289E—3 1.372E—2 1.0107 1.0056 1.0046 1.0043 1.0041 1.0000
4 4268E—3 1.446E —2 1.0093 1.0054 1.0044 1.0041 1.0040 1.0000
5 2.08E—2 1.506E—2 1.0090 1.0056 1.0046 1.0043 1.0041 1.0000
6 1.728E—3 1.645E—2 1.0072 1.0042 1.0034 1.0032 1.0030 1.0000
7 6.943E—3 2233E—2 1.0354 1.0199 1.0169 1.0155 1.0148 1.0000
8 4824E—3 3.136E—2 1.0292 1.0170 10161 1.0147 1.0140 1.0000
9 3571E—4 3986E—2 1.0302 1.0368 1.0325 1.0293 1.0277 1.0000
10 8.476E—4 4.580E —2 1.0420 1.0559 1.0516 1.0462 1.0437 1.0000
11 1.154E—3 5032E-2 1.0491 1.0585 1.0616 1.0549 1.0517 1.0000
12 1.200E—3 5499E —2 1.0553 1.0586 1.0726 1.0643 1.0613 1.0000
13 1.932E—3 5811E—2 1.0543 1.0424 1.0693 1.0610 1.0569 1.0000
14 1.392ZE—3 5.798E —2 1.0565 1.0437 1.0698 1.0625 1.0587 1.0000
15 1.419E—3 5.626E—2 1.0661 1.0605 1.0831 1.0726 1.0675 1.0000
16 2310E—3 3.237E—2 1.0857 1.0918 1.1192 1.1053 1.0981 1.0000
17 4577TE—3 2.882E—2 1.1396 1.1838 1.2213 1.1966 1.1815 1.0000
18 6.948E—3 2.655E—2 1.2189 1.2932 1.3040 1.2676 1.2415 1.0035
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Table II gives the statistical errors of the results in Table I. Column 1 gives the
zone number as in Table I. Column 2 gives Ap/p, where 4p is the standard error of p,
the arithmetic mean of the density for each zone. Column 3 gives A(4x)/4x, where
A(4x) is the standard error of Ax, the arithmetic mean of the width of each zone.
Columns 4-9 give 4b,, the standard errors of the geometrical means, b,, of the
departures from L.T.E. To avoid confusion in the interpretation of 4b, it should be
pointed out that the standard error of the geometrical mean, o(Jgy,), is defined here

to be
1 ) —1 y 2
U(fGM) — ANTILOG /2 [ OgIO(yz) Oglo(yGM)] ’ (89)
i=1

m(m—1)

where J;,, is the geometrical mean of y, and m is the number of values of y on which
Veum 1s based.

The uncertainty in the temperature of each zone was obtained from the results
of four successive iterations, made after stabilization of the temperature profile, in
each of which random oscillations in the temperature of each zone were not damped
in any way. The mean temperature profile remained close to that obtained when the
profile was damped, within the range of the statistical temperature fluctuations
between successive iterations. For zones 1-5 the standard error in T, is close to 250K,
reaching 500K in zone 7. For zones 8 and 9 the error is approximately 750K, reaching
1000K in zone 10. For zones 11-18 the error is approximately 1500 K.

To avoid possible confusion the following examples illustrate the notation used
in Tables I and II:

3.955E —8=3.955x%x10""
3.372E + 8 = 3.372 x 10°
1.116 E + 0 = 1.116.

5. Discussion

Non-L.T.E. effects in the level populations of the hydrogen atom in early-type stellar
atmospheres have been studied by MiHALAS (1967b, c). The physical theory he used
differs in some details from that described in Section 2. In particular there are dif-
ferences in the assumed chemical composition, the model of the hydrogen atom, the
treatment of the statistical equilibrium equations, the formulation of the source
function, and the determination of the local temperature.

MIHALAS (1967b) has computed a model for an effective temperature T.; of
25000K, and surface gravity g of 10* cm sec™ 2. The atomic model for hydrogen was
approximated with 15 bound levels and the continuum. The statistical equilibrium
equations were solved for the first 10 levels with the remaining levels n=11 through
n=15 assumed to be in L.T.E. Departure coefficients, d,, were calculated for the
lowest 3 levels. The quantity d, is related to b, by

d,=b,—1. (90)
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The results show that below an optical depth t,4004~2 % 10~ 2 all the level popula-
tions are very close to their L.T.E. values. Higher in the atmosphere departures from
L.T.E. occur. Level n=1 becomes overpopulated, while level =2 becomes somewhat
depopulated. The quantity d; is approximately equal to unity near t,4004~107%,
while d,~ —0.3 at the same optical depth. The quantity d; remains close to zero.
MiHALAS (1967¢) has extended this work by improving the treatment of the transfer
of the Lyman continuum and computed two more models for effective temperatures
of 20000K and 25000K. Both refer to surface gravities of 10* cm sec™2. For a T,y
of 25000K the results obtained are similar to those in the earlier paper. For a T,
of 20000K the level populations are very close to L.'T.E. below an optical depth
Ts000a >3 % 1073, Higher in the atmosphere deviations from L.T.E. occur. The
lowest level n=1 becomes overpopulated with d; ~4 at t44004~=107", and level n=2
becomes somewhat depopulated with d,~ —0.4 at the same optical depth. The
reliability of the results obtained by the trial application of the relaxation method
may be checked by comparison with the results obtained by Mihalas. The latter
results have been obtained by methods of proven reliability.

The results presented in Table I have been plotted in Figures 1, 2, and 3. The
main features of the electron temperature and density profiles are shown in Figure 1.
The apparent departures of the level populations from L.T.E., as a function of
optical depth 4004, are shown in Figures 2 and 3. Table II shows the stability of
the solution for the atomic level populations. The stability of the temperature profile
has been discussed in the previous section.
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Fig. 1. Electron temperature and density profiles for a pure hydrogen early-type model atmosphere.
Boundary conditions were chosen as To = 50000K, po = 5.0 x 10-% grms cm~3.
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Fig. 2.  Apparent departures, by, from L.T.E. for the hydrogen atom for principal quantum numbers
n=1and n=2.
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Fig. 3. Apparent departures, b», from L.T.E. for the hydrogen atom for principal quantum numbers
n=13,4,5 and for the continuum.
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The temperature profile shown in Figure 1 requires some explanation because of
its unusual behavior at large optical depths. It indicates that for optical depths,
T4000 4> greater than about 20 the model atmosphere is unable to cool from its initial
isothermal state. This implies that the net outward flux of radiation becomes zero
at such large depths. The reason is the breakdown of the Monte Carlo technique.
At large optical depths the upward and downward radiation fluxes, F, and F_
respectively, are large. However, the net outward flux given by

AF =F, — F_ 91)

is relatively small. Because of the limited number of source particles which must be
used to transfer the radiant energy, small fluctuations in F, and F_ can easily occur
and be larger than AF which will then become indeterminate. At smaller optical
depths, while AF should remain the same as before, both F, and F_ are smaller and
AF/F is larger. In this case fluctuations in F, and F_ have much less effect on the
determination of AF. This qualitative explanation may be put on a quantitative basis
by considering the value of the parameter n, and the optical thicknesses of the deepest
zones of the atmosphere.

Consider the deepest zone immediately adjacent to the lower-base boundary.
For a temperature of 50000K with the zone in L.T.E. the optical thickness, Az, in
each of the bound-free continua is of the order of 10°. A total of n, source particles
of each species originate uniformly at random throughout the thickness of the zone.
No source particle of a given species should originate at an optical distance less than
about At/n, from either of the zone boundaries. The direction of emission is chosen
uniformly at random from an isotropic distribution. The particle originating closest
to either of the zone boundaries may be expected to travel an optical distance of about
(4t/n,)* before crossing into the adjacent zone. Each source particle may be ex-
pected to suffer substantially complete absorption by the stellar material within an
optical distance of the order of unity from its point of origin. Consequently, if

{At/n,}? = 1 (92)

none of the information carried by the source particles originating in that zone can
leak into the adjacent zones. As a result the zone cannot cool because the net outward
flux is zero. In the trial calculation n, was set equal to 2000. With 4t~ 10 in the
deepest layers of the atmosphere Equation (92) shows that the first few zones above
the lower base boundary will be unable to cool. The reliable determination of AF
will be discussed further below.

Comparison of the apparent departures from L.T.E., shown in Figures 2 and 3,
with the results obtained by MiHALAS (1967b, c) show that although our solution has
stabilized it is still a Jong way from being physically realistic. The apparent departures
from L.T.E. remain far from small even at large optical depths. Stabilization of the
solution after only 3 iterations was rather surprising particularly in view of the
apparent rapid relaxation towards the physically realistic solution manifest in the
initial few iterations. During the first few iterations the ground level in the outermost
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zone increased in population by a factor of about 3 from one iteration to the next
as the temperature dropped and recombination from the continuum occurred. Such
a large initial rate of relaxation was extremely encouraging and suggested that a
converged solution could be obtained with perhaps 20 or 30 iterations. However,
these initial hopes were not fulfilled because of the occurrence of unacceptably large
fluctuations in the solution at large optical depths. These fluctuations severely
adversely affect the solution at smaller depths. The essential problem encountered is
that 4F is not being accurately maintained constant with optical depth. In particular
AF is uncertain at large optical depths where its accurate evaluation is most difficult.
The solution to the problem of maintaining flux constancy to high accuracy is to
select the parameters ng, 1, and @y on the basis of the following considerations.

Consider again a typical zone deep in the atmosphere near the lower-base boundary.
At each wavelength the upward and downward fluxes of radiation are represented by
approximately #,/2 source particles. If it is assumed that each of these source particles
eventually crosses one or the other of the zone boundaries before thermalization the

quantities F, and F_ at either boundary are represented by (nz/2)i\/ (n,/2)source
particles. Consequently AF cannot be known to a fractional accuracy better than

about 2/\/ n,. All the source particles of a particular species will reach either one of
the zone boundaries only in the limit of small optical thickness. In practice the optical
thickness of a zone at some, or all, wavelengths may be very far from small. To ensure
that each of the source particles reaches either boundary before thermalization a
suitable choice of wyr must be made for each wavelength by considering the opti-
cally thickest zone.

For a typical source particle which originates near the center of a zone of optical
thickness At the optical path it must traverse to reach one of the boundaries will be
of the order of (4t/2)%. If wypyr i so chosen that

A 2
DpimrT > exp{— |:T:| } (93)
Wy 2

all the source particles will reach either of the boundaries before thermalization and
be included in the determination of AF at each boundary.

With currently available methods for the computation of model stellar atmospheres
it is possible to maintain AF to an accuracy of better than 0.1%. To use the Monte
Carlo relaxation technique to obtain AF to the same accuracy a value of n, of the
order of 2 x 10° is demanded. This would be an increase of a factor 10* compared
with the value of n, used in the trial calculation. Choosing sufficiently small values of
the parameter wyyr SO that the same flux constancy could be maintained for all
continuum wavelengths, and for the lines, would also be a problem. In particular
the accurate transfer of the Lyman continuum and the Lyman lines would be very
difficult. As the relaxation from a high-temperature isothermal state proceeds, the
lowest bound levels in the outermost zones of the atmosphere become increasingly
populated by recombination from the continuum. In particular the population of
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the ground state increases very markedly and as a result the zones become increasingly
optically thick to the Lyman continuum and Lyman lines. The somewhat arbitrary
but necessary choice of wypyr as equal to 0.005 w, prevents the migration of a source
particle further than an optical distance of the order of 5.3 from its point of origin.
The parameter vy should ideally be chosen using the condition given in Equation
(93). To avoid changing @y wyr, but still maintaining the same flux accuracy, an alter-
native procedure would be to decrease the zone thickness in accordance with the
same condition. Choice of a large value for n,(and ng), and an appropriately small
value of wypyr for each wavelength, would enable the temperature profile of the at-
mosphere to be very reliably determined. There would be no need to resort to artificial
damping procedures to maintain stability in the temperature profile.

In conclusion, the Monte Carlo relaxation method shows future promise as a
very simple technique for the computation of model stellar atmospheres. However,
more accurate and detailed investigations of the convergence properties of the
method are required before it can be applied to the interpretation of stellar spectra.
Continued development of the method will require a substantial increase in the
speed of the available electronic computing machines.

References

ALLEN, C. W.: 1963, Asirophysical Quantities, 2nd ed., Athlone Press, London, p. 42.

CiILLIE, G.: 1932, Monthly Notices Roy. Astron. Soc. 92, 820.

FEAUTRIER, P.: 1968, in Proc. 3rd Harvard-Smithsonian Conf. Stellar Atmospheres, 1968 (in press).

FLEck, J. A. Jr.: 1963, Methods in Computational Physics, I, Academic Press, New York, p. 43.

GRrIEM, H. R.: 1960, Astrophys. J. 132, 883.

GRYZINSKI, M.: 1964, in Atomic Collision Processes (ed. by M. R. C. McDowell), John Wiley, New
York, p. 226.

HumMER, D. G.: 1965, in Proc. 2nd Harvard-Smithsonian Conf. Stellar Atmospheres, 1964, S.A.O.
Spec. Rep. 174, p. 27.

IvaNov, V. V. and SHCHERBAKOV, V. T.: 1965, Astrofizika 1, 22.

KALKOFEN, W.: 1966, J. Quant. Spectrosc. Radiat. Transfer 6, 633.

LEecar, M.: 1965, in Proc. 2nd Harvard-Smithsonian Conf. Stellar Atmospheres, 1964, S.A.O. Spec.
Rep. 174, p. 217.

MEenzeL, D. H. and PekEris, C. L.: 1935, Monthly Notices Roy. Astron. Soc. 96, 77.

MiHALAS, D.: 1967a, Methods in Computational Physics, VII, Academic Press, New York, p. 1.

MisALAS, D.: 1967b, Astrophys. J. 149, 169.

MiHALAS, D.: 1967¢c, Astrophys. J. 150, 909,

MiHALAS, D.: 1968, Astrophys. J. 151, 293.

Seitzer Jr., Lyman: 1962, Physics of Fully Ionized Gases, 2nd ed., John Wiley, New York, p. 131.

STROM, S. E.: 1967, Astrophys. J. 150, 637.

STrOM, S. E. and KALKOFEN, W.: 1966a, J. Quant. Spectrosc. Radiat. Transfer 6, 653.

StrOM, S. E. and KALKOFEN, W.: 1966b, Astrophys. J. 144, 76.

WiEse, W. L., Smite, M. W., and GLENNON, B. M.: 1966, Atomic Transition Probabilities, Vol. 1,
NSRDS-NBS4, U.S. Govt. Printing Office, Washington, D.C.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1969Ap%26SS...4..182P

